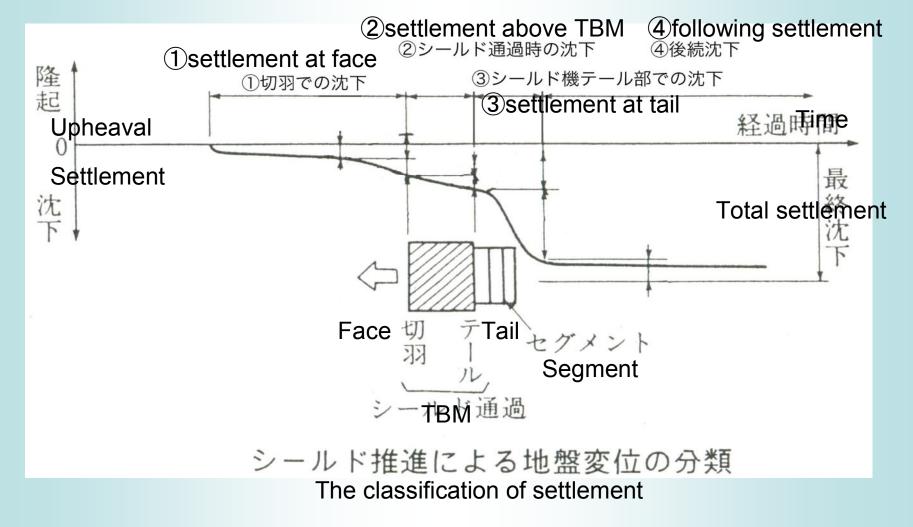
For all soil conditions

TAC through


The polymer additive for EPB TBM

TAC Corporation

TBM excavation and settlement

Line of settlement during TBM excavation

Factors and analysis in settlement

	Factors	analysis		
① settlement at face	Looseness because of release of in-situ stress	Control miss of earth pressure at face		
② settlement above TBM	Looseness because of overcutting	Release of in-situ stress because of overcutting Controls miss of TBM position		
③ settlement at tail	Collapse of tail void	Shortage of pressure and volume in backfill grouting Delay at timing of grouting		
<pre>④following settlement</pre>	Consolidation settlement	Fade of excess pore water pressure Damage of soil structure		

Earth pressure control at face

- The main factors of settlement at face are because of control miss in pressure and excavate soil volume.
- Making excavate soils to plastic flow muck makes proper excavation control.
- Utilization of proper materials and proper injection range for excavate soils is able to be stable excavation.

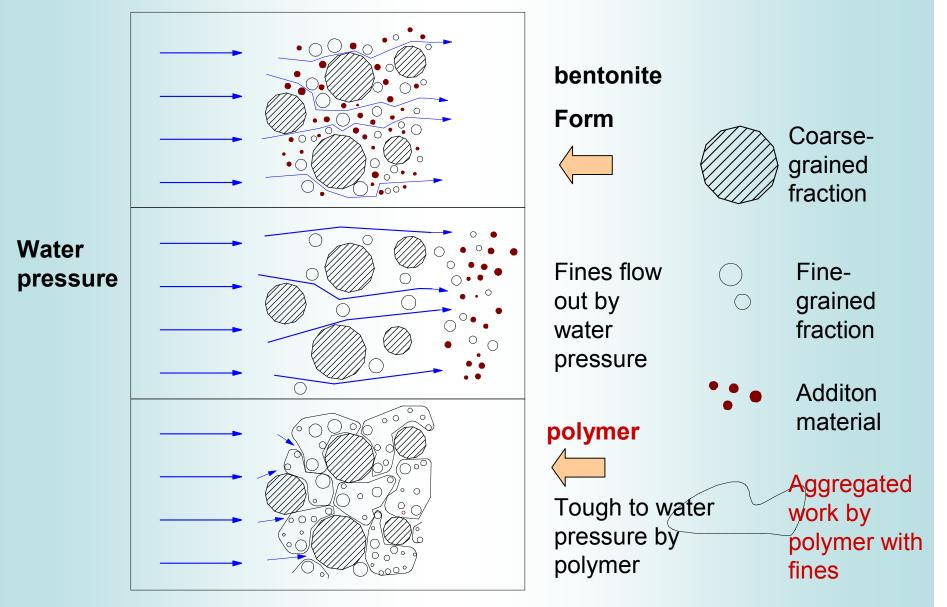
Sorts of additive material

	Target Soils	Character	problems	
Bentonite	gravel sand	Easy to get it General material	Plant and storage yard are big	
Form	gravel sand silt clay	Cutter torque is small Easy to make plastic muck	Difficult to control pressure balance in gravel and sand without fines	
Polymer	gravel sand silt clay	Easy to make plastic muck by mixing with fines	Need fines in excavate soils	
Multiple additions	gravel and sand without fines	Efficient for gravel and sand without fines to use bentonite+form+p olymer	Complex to equipment	

Outline of TAC Through

- Maker : TAC Co.
- Name : TAC Through
- Look : liquid
- PH :6.8
- Gravity : 1.06
- Stickiness :1.0~2.0dPa·s
- Figure : 18kg/can

TAC Through Undiluted solution and Water


solution+water (1:10) (paste)

TAC Through Undiluted solution (a little sticky) TAC Through dilute liquid 1kg/m3 (like water)

Working of TAC Through

Diluvial clay and TAC through

add water 30% (volume range) to soil Difficult to mix water and hard clay add TAC through water(0.1% density)30%(volume range)to soil

Easy to mix water and hard clay

TAC through liquid makes mass clay to soft clay and protects sticking to chamber.

Sand soil and TAC through

add water 15% (volume range) to soil

Water flows out from soil

add TAC through water(0.1% density)15% (volume range) to soil

Soft and close-knit soil

TAC through liquid mixes with fines in sand soil, and sand soil changes to be a closeknit soil.

Gravel sand soil and TAC through

volume range) to soil

Bentonite liquid flows out from soil

add TAC through water(0.2% density)20%(volume range)to soil

Soft and close-knit soil

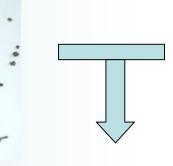
TAC through liquid mixes with fines in gravel sand soil, and sand soil changes to be a close-knit soil.

Gravel sand soil and TAC through (movie)

Gravel sand squeal by mixing

Gravel sand + TAC smooth by mixing

Gravel sand soil without fines and bentonite solution

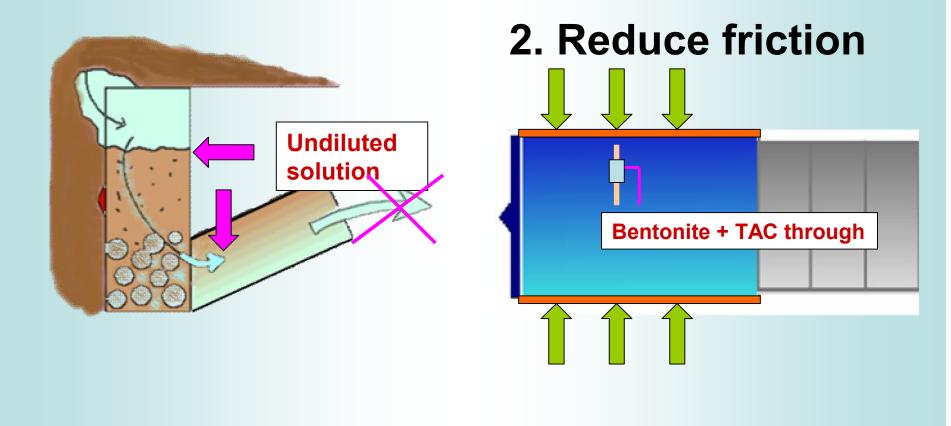

Add bentonite solution 20% to soil

Soil doesn't fix

Gravel sand soil without fines and TAC through

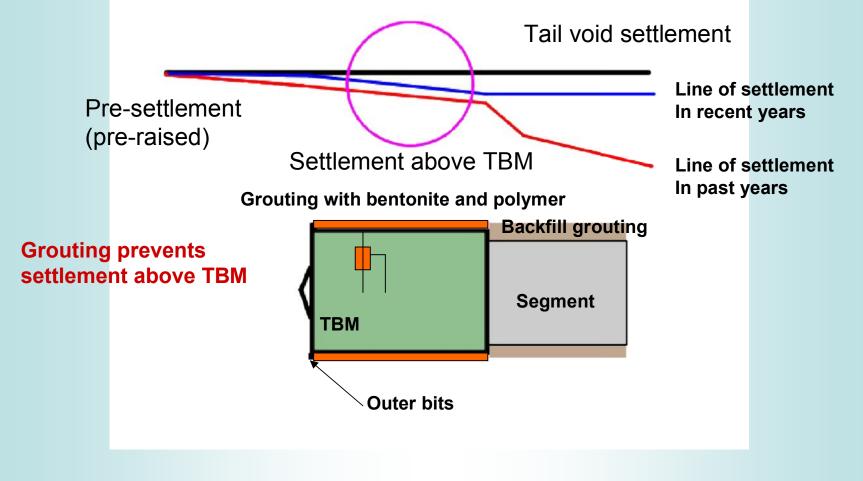
Gravel sand soil without fines

bentonite liquid 20%+TAC through water(0.3% density) 10%


> Gravel sand soil changes to be soft and smooth

Characteristics of TAC through

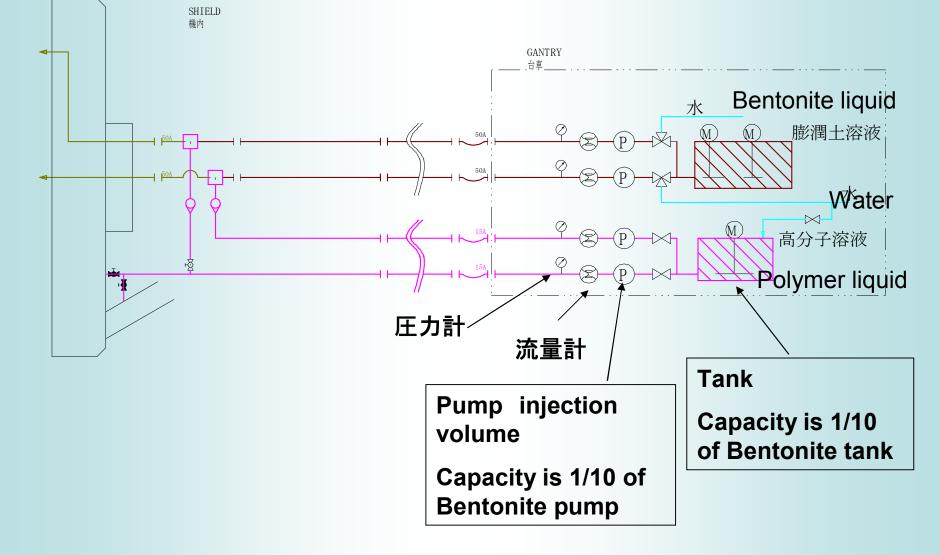
- Effect is big as material volume is small
- It fixes with fines in gravel sand soil and changes to be soft soil
- For diluvial clay or weathering granite, add 30~50% (0.1% density)
- For gravel sand soil (above 10% fines included), add 10~20% (0.1~0.3% density)
- For gravel sand soil (almost no fines), use bentonite with TAC through


Applied cases of TAC through

1. Protect to spout

Applied cases of TAC through

3. Prevention grouting against settlements above TBM


Calculation sample 1 (polymer + water)

1.	Condition							
1	TBM O.D						6.34	m
2	Excavation D						6.34	m
3	Segment O.D						6.00	m
4	Segment width						1.50	m/ 1R
5	TBM speed						50	mm/ min
6	Polymer injection ratio			15.0	%			
7	Dilution ratio (Polymer agent)/(Solution)			0.10	%			
8	TBM cross-sectional area	π / 4×	6.34	2			31.57	m ²
9	Polymer injection volume / 1m	31.57	m ³ / 1m	×	15.0	%	4.74	m ³
10	Polymer agent volume / 1m	4.74	m ³ / 1m	×	0.1	%	4.74	L
11	Polymer injection volume / 1R	4.74	m ³ / 1m	×	1.50	m/ 1R	7.11	m ³ / 1R
12	Polymer agent volume / 1R	4.74	L/ 1m	×	1.50	m/ 1R	7.11	L/ 1R
13	Polymer injection flow	4.74	m ³ / 1m	×	0.050	m/ min	237.0	L/ min
14	Polymer agent injection flow	4.74	L/ 1m	×	0.050	m/ min	0.24	L/ min

Calculation sample 2

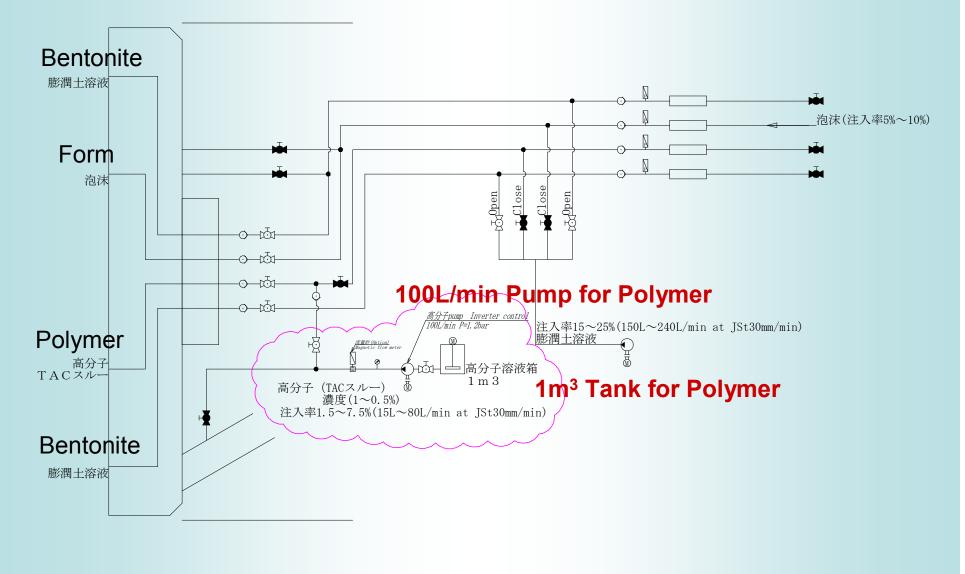
	Condition (TAC through)		Olyli	10		Bentonite	<u>ار ت</u>	
1 1	TBM O.D						6.34	m
2 E	Excavation D						6.34	m
3 5	Segment O.D						6.00	m
4 S	Segment width						1.50	m/ 1R
5 1	TBM speed						50	mm/ min
6 F	Polymer injection ratio						2.0	%
7 I	Dilution ratio (Polymer agent) / (Solution)				1.00	%		
8 1	TBM cross-sectional area	π / 4×	6.34	2			31.57	m ²
9 F	Polymer injection volume / 1m	31.57	m ³ / 1m	×	2.0	%	0.63	m ³ / 1m
10 F	Polymer agent volume / 1m	0.63	m ³ /1m	×	1.0	%	6.30	L/ 1m
11 F	Polymer injection volume / 1R	0.63	m ³ / 1m	×	1.50	m/ 1R	0.95	m ³ / 1R
12 F	Polymer agent volume / 1R	0.63	L/ 1m	×	1.50	m/ 1R	9.45	L/ 1R
13 F	Polymer injection flow	0.63	m ³ /1m	×	0.050	m/ min	31.5	L/ min
2. (Condition (bentonite liquid)							
1 1	TBM O.D						6.340	m
2 E	Excavation D						6.340	m
3 5	Segment O.D						1.500	m/ 1R
4 S	Segment width						50	mm/ min
5 1	TBM speed						20.0	
6 1	TBM cross-sectional area	π / 4×	6.340	2			31.57	m^2
7 E	Bentonite injection volume / 1m	31.57	m ³ / 1m	×	20.0	%		m ³ / 1m
8 E	Bentonite injection volume / 1R	6.31	m ³ / 1m	×	1.500	m/ 1R	9.47	m ³ / 1R
9 H	Bentonite injection flow	6.31	m ³ / 1m	×	0.050	m/ min	315.5	L/ min

Equipment of polymer

Injection pump for TAC through

Tube type

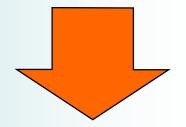
Injection volume control by inverter


Screw type

Piston type

Sample of additional equipment for TAC through

Muck of using TAC through



muck on the conveyer is smooth and a close-knit soil. The muck doesn't fall out of the conveyer nor stick on the conveyer.

Collateral effects of using TAC through

time of cleaning the tunnel is shorter than ever. troubles of conveyer becomes to be decrease. muck stick on truck became to be decrease.

Stable of excavation cycle Excavation progress rate up clean on the truck

Improvement of working environment

Conclusion

- smooth excavation makes repression of face settlement.
- using proper addition material makes smooth excavation.
- TAC through is useful material which is easy to use and has large application range.
- TAC through with changing of density and injection rate can use for all kind of soils.
- TAC through with bentonite solution can use for Gravel sand soil without fines.
- Equipment can built more existent by small money.

Thank you for listening

TAC Corporation

TEL:+81-869-84-2069 (代) FAX:+81-869-84-3288

http://www.tac-co.com

E-mail: masuoka@tac-co.com