Backfill Grouting

1 Liquid type (From Europe)
And

type (From Japan)

TAC CORPORATION

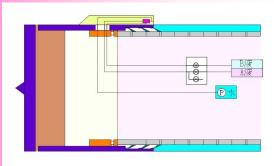
〒703-0223

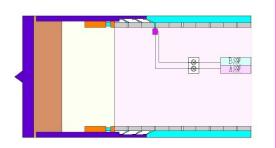
1073 Minamigata Bizen City JAPAN

T +81(0)869 84 2069 F +81(0)869 84 3288

www.tac-co.com info@tac-co.com

1. Purpose of Backfill Grouting


- It prevents collapse of Tail-void, then stabilizes looseness of soil-condition, keeps settlement.
- It stabilizes Segment-structure as soon as possible.
- It makes tunnel-track stable.
- It protects gap of segment from water.


2. Injection ways of grouting

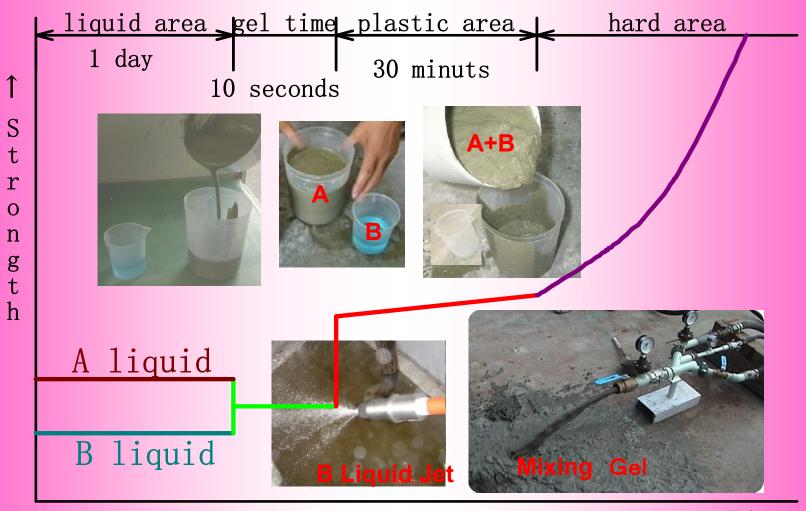
- Injection way is due to injection timing and layout of injection hole.
- Simultaneous injection is the most effective.

Simultaneous Injection (From TBM's pipe)

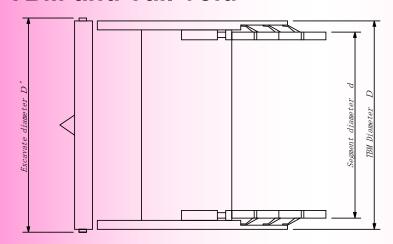
Immediate Injection (From segment hole)

	Layout of injection hole	Timing
Simultaneous Injection	TBM's Pipes (With automatic system)	Simultaneous Injection with Excavation
Immediate Injection	Segment holes (With manual system)	Injection behind Excavation

3. Type and Character of Materials


Common Type in the World 1 Liquid type **Material Cement Sand Bentonite Fly-ash Water Need many injection point Because of less Fluidity** Some Composition uses Lime instead of Cement **Transports Liquid by truck Invented in Japan and expand to Asia** 2 Liquid type **Cement Bentonite Water** + Sodium-Silica Plenty of Fluidity, Only few Injection point After Mixing of 2 Liquid, Quick plastic gel and early hardening **Transports Liquid by long way pipes**

1 Liquid type


- Sticky
- High density
- Less Fluidity
- Long time hardening

2 Liquid type

4. Design ways of Equipment 1

1. TBM and Tail-void

A Unit of Tail-void Volume $= \pi/4 (D^2 - d^2)$

2. Calculation A Unit of Tail-void Volume

<General> Injection Volume L(1m unit) = Tail-void Volume × Rate
Rate is usually 130% due to looseness of soils

< Considering soils > Sometimes Rate depend on soil types

	Hard Clay	Loose Clay	Sand Gravel	Stone Gravel
Rate(%)	130	130~150	130~150	140~160

Design ways of Equipment 2

3. Jack-Speed and Injection-flow volume

```
Injection-flow volume (L/min)
= (Injection volume(L) × JS(mm/min))/100
```

For 2 liquid type, each volume needs to calculate

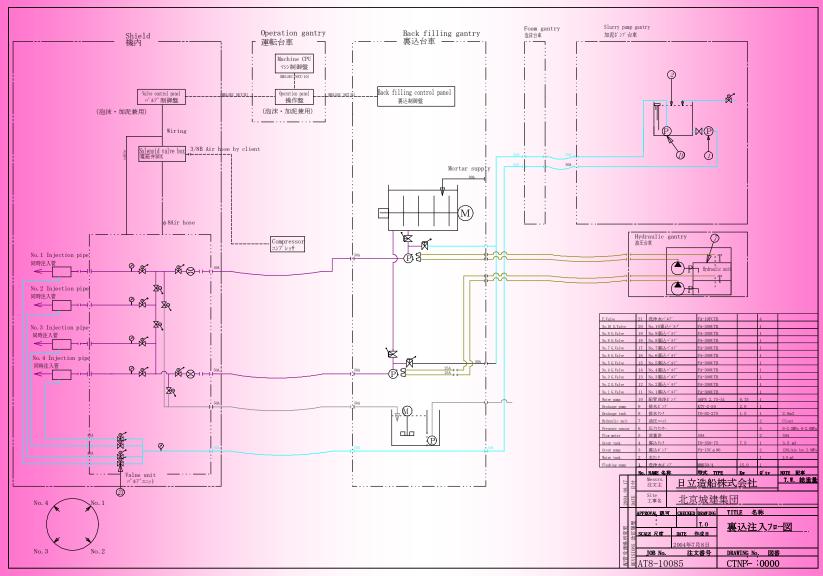
4. Choice of Pumps

- Pump's Choice is due to 1 Liquid type and 2.
- For 1 Liquid type, Piston type (High Pressure type)
- For 2 Liquid type, any kind of pumps is OK.
 2 pumps are needed (For 2 Liquid, large and small)
- Decide quantity of Pump by points and volume.
- For 1 Liquid type, many pumps are needed because Material is not easy to encircle Segment completly.
- For 2 Liquid type, easy to encircle, proper volume is 100~150L/min by one place.

Design ways of Equipment 3

5. Mixture Plant

- Generally Mixture Plant capacity needs over 120% than theoretical injection volume (by 1 ring).
- For 1 Liquid type, Transports Liquid by truck
- For 2 Liquid type, Transports Liquid by long way pipes


6. Gantry system

- Gantry system is structured with Pumps, Agitator-Tank, Switch-Valve, Automatic-Control-system.
- Agitator-Tank Structure is due to 1 and 2.
- For 1, Needs strong mixture structure.
- For 2, Needs easy mixture structure.
- Generally Agitator-Tank volume needs over 120% than theoretical injection volume.

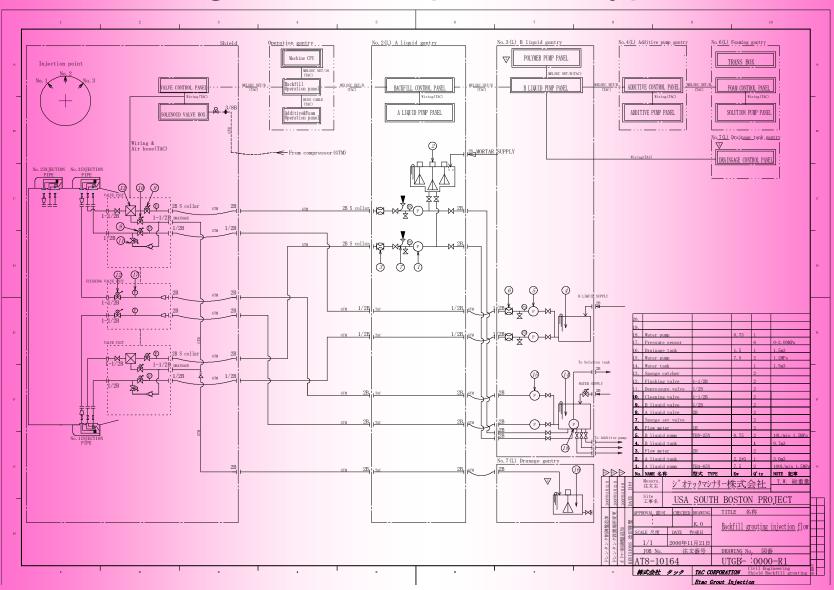
5. Different Points by Materials

	Injection pumps	Agitator Tank	Injection Pipes
1 liquid	1 Line 1 pump Many Injection Points High Pressure Piston Pump	Mixture power Strong Tank volume Big	Many pipes Bore Big Pipe Washing System Needed
2 Liquid (A+B)	1 Line 2 pumps (Big, Small) Few Injection Points Volume Variable Pump	Mixture power Weak Tank volume Small (if transfer by pipes) Needs B Tank	Few pipes Bore Small Pipe Washing System Prerequsite

6. Grouting Flow Sample for 1 type

Calculation Sample for 1 Type

1. Condition


TBM O.D		6.15 m
Segment O.D		6.00 m
Segment width		1.20 m/R
TBM speed		0.080 m / min
Theoretical Tail void /1m	$\pi/4 \times (6.15^2 - 6.00^2) \times 1$ m	1.43 m 3
Theoretical Tail void / 1R	$1.43 \text{ m}^3/\text{m} \times 1.2 \text{ m/R}$	1.72 m3
Backfill injection ratio		130 %
Backfill injection volume / 1m	$1.43 \text{ m}^3/\text{m} \times 1.3$	1.86 m3
Backfill injection volume / 1R	$1.72 \text{ m}^3/\text{m} \times 1.3$	2.24 m3
Backfill injection flow	$1.86 \text{ m}^3/\text{m} \times 0.080 \text{ m} / \text{min} \times 1000 \text{L} / \text{m}^3$	149 L / min

Specification Sample for 1 Type

2. Specifications

	25 2751 (4 11 2 2 2)	. 224 2/B
Tank	3.5 m ³ 7.5kw (actually3.0m3)	> 2.24 m3 / R
Grout pump	Piston pump1.0~2.0Mpa (normally using) Maximum 5.0MPa (especially using) Flow Maximum 120L/min (at no-load running)×2	> 149 L/min
Hydraulic unit	By the client $22kw \times 2$	
Flushing pump	5.5kw 130m	
Water tank	2.0M3	
Drainage tank	2.0M3 1.5Kw	
Drainage pump	2.0kw	
Flow meter	2set	Magnetic flow meter
Pressure sensor	5set	
Valve unit	12 Pneumatic valves system manifold	
Cleaning valve unit	4 Pneumatic valves system manifold	
Operation panel	Touch sensor panel	Auto/hand operation
Backfill system control panel		
Tank control panel		
Valve control panel	Share it with foaming system	
Solenoid valve box	Share it with foaming system	

7. Grouting Flow Sample for 2 type

Calculation Sample for 2 Type

TBM O.D		5.86 m
Segment O.D		5.69 m
Segment width		1.219 m/R
TBM speed		0.080 m / min
Backfill injection ratio		135 %
2 liquid combination	A : B =0.909: 0.091	10:1
Theoretical Tail void / 1m	$\pi/4 \times (5.86^2 - 5.66^2) \times 1$ m	1.80 m3
Theoretical Tail void / 1R	$1.80 \text{ m}^3/\text{m} \times 1.219 \text{ m/R}$	2.19 m3 / R
Backfill injection volume / 1m	$1.80 \text{ m}^3/\text{m} \times 1.35$	2.43m3
Backfill injection volume / 1R	$2.43 \text{ m}^3/\text{m} \times 1.219$	2.96 m3
Backfill injection flow	$2.43 \text{ m}^3/\text{m} \times 0.080 \text{ m} / \text{min} \times 1000 \text{L} / \text{m}^3$	194 L / min
Injection volume /1m of A liquid	$2.43 \text{ m}^3/1\text{m} \times 0.909$	2.21m3
Injection volume /1m of B liquid	$2.43 \text{ m}^3/1\text{m} \times 0.091$	0.22m3
Injection volume /1R of A liquid	$2.96 \text{ m}^3/1\text{R} \times 0.909$	2.69m3
Injection volume /1R of B liquid	$2.96 \text{ m}^3/1\text{R} \times 0.091$	0.27m3
A Liquid flow	$2.21 \text{ m}^3/\text{m} \times 0.080 \text{ m} / \text{min}$	177 L / min
B Liquid flow	$0.22 \text{ m}^3/\text{m} \times 0.080 \text{ m} / \text{min}$	17.6L / min

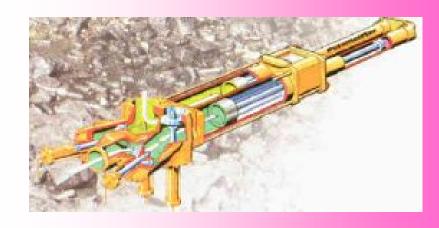
Specification Sample for 2 Type

A Liquid Tank	3.0 m ³	> 2.69 m3 / R
B liquid tank	0.7 m^3	> 0.27 m3 / R
A liquid pump	Tube pump 7.5kw Max 1.5Mpa Max 100L/min×2nos. = 200L/min	> 177 L/min
B liquid pump	Tube pump 0.75kw Max 1.5Mpa Max 10L/min×2nos. = 20L/min	> 17.6 L/min
Pressure sensor	A×2nos. B×2nos.	
Flow meter	A×2nos. B×2nos.	
Valve unit	2nos.	
Valve control panel	1no.	
Solenoid valve box	1no.	
Backfill control panel	1no. Control by the pressure	
Operation panel	1no.	

8. Variety of Pumps

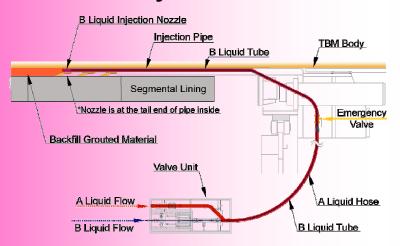
Piston Pump(PA型) Hydraulic For 1 Liquid type

Tube Pump(TBA型) For 2 Liquid type


Snake Pump For 2 Liquid type

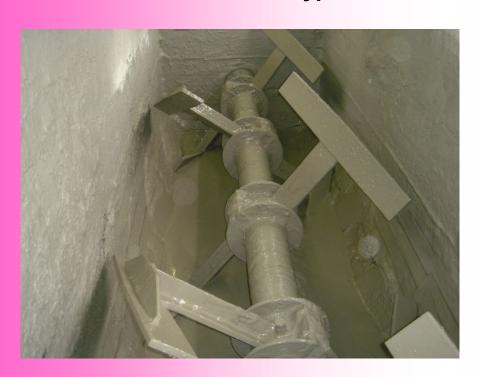
Variety of Pumps - 2

Piston Pump High Pressure (Putzmeister社 Schwing社)



9. Variety of Pipes

ETAC system



10. Variety of Agitator-Tank

For 1 Liquid type Horizontal Type

For 2 Liquid type Vertical Type

